KR3f0009 乾坤體義-明-西洋利瑪竇 (WYG)


[003-1a]
欽定四庫全書
 乾坤體義卷下
            明 利瑪竇 撰
  容較圖義
萬形有全體目視惟一面即面可以推全體也面從界
顯界從線結總曰邊線邉線之最少者為三邉形多者
四邉五邉乃至千萬億邉不可數盡也三邉形等度者
其容積固大於三邉形不等度者四邉以上亦然而四
[003-1b]
邊形容積恒大於三邉形多邉形容積恒大於少邉形
恒以周線相等者騐之邉之多者莫如渾圜之體渾圜
者多邉等邉試以周天度剖之則三百六十邉等也又
剖度為分則二萬一千六百邉等也乃至秒忽毫釐不
可勝算萬形愈多邉則愈大故造物者天也造天者圜
也圜故無不容無不容故為天試論其槩
[003-2a]
 
 
 
 
 
 
 
 
[003-2b]
凡兩形外周等則多邉形容積恒大於少邉形容積
 假如有甲乙丙三角形其邉最少就底線乙丙兩平
 分於丁作甲丁線其甲乙甲丙兩腰等丁乙丁丙又
 等甲丁丙角甲丁乙角皆等則甲丁線為乙丙之垂
 線幾何原本/一卷八次作甲戊丙丁直角形而甲戊與丁丙
 平行戊丙與甲丁平行視前形增一角者一卷四又/三十六
 既甲丁丙甲丁乙兩形等而甲丙戊與甲丁乙亦等
 一卷三/十四則甲丁丙戊方形與甲乙丙三角形自相等
[003-3a]
 矣以周論之其甲戊戊丙丙丁甲丁四邉皆與乙丁
 相等甲丙邉為弦其線稍長試引丙戊至己引丁甲
 至庚皆與甲丙甲乙線等而作庚丁己丙形與甲乙
 丙三角形同周則贏一甲庚己戊形故知四邉形與
 三邉形等周者四邉形容積必大於三邉形
[003-4a]
凡同周四直角形其等邉者所容大於不等邉者
 假有直角形等邉者每邉六共二十四其中積三十
 六另有直角形不等邉者兩邉數十兩邉數二其周
 亦二十四與前形等周而其邉不等故中積只二十
 又設直角形其兩邉各九其兩邉各三亦與前形同
 周而中積二十七又設一形兩邉各八兩邉各四亦
 與前同周而中積三十二或設以兩邉為七以兩邉
 為五亦與前同周而中積三十五是知邉度漸相等
[003-4b]
 則容積固漸多也
[003-5a]
 
 
 
 
 
 
 
 
[003-5b]
 試作直角長方形令中積三十六同前形之積然周
 得三十與前周二十四者迥異今以此周作四邉等
 形則中積必大於前形
[003-6a]


[003-7a]
凡同周四角形其等邉等角者所容大於不等邉等角

 設甲乙丙丁不等角形從丙丁各作垂線又設引甲
 乙至己作戊丙己丁四角相等形一卷三/十五與不等角
 形同底原相等一卷十九/又三十四甲乙亦同戊己而乙丁及
 甲丙線則贏於己丁戊丙線是甲乙丙丁之周大於
 戊丙己丁之周試引丁己至辛與乙丁等引丙戊至
 庚與甲丙等而作庚丙辛丁形則多一庚戊辛己形
[003-7b]
 因顯四等角形大於不等角形
  以上四則見方形大於長形而多邉形更大於少
  邉形則圜形更大於多邉形此其大畧若詳論之
  則另立五界説及諸形十八論於左
第一界等周形
 謂兩形之周大小等
第二界有法形
 謂不拘三邉四邉及多邉但邉邉相等角角相等即
[003-8a]
 為有法其攲邪不就規矩者為無法形
第三界求各形心
 但從心作圜或形内切圜或形外切圜皆相等者即
 係圜與形同心
第四界求形面
 謂周線内所容人目所見乃形之一面
第五界求形體
 如立方立圜三乗四乗諸形乃形之全體
[003-9a]
  第一題
凡諸三角形從底線中分作垂線與頂齊髙以中分線
及髙線作矩内直角方形必與三角形所容等
 解曰有甲乙丙三角形平分乙丙于丁于庚作垂線
 至甲至辛作甲丁己丙及辛庚己丙直角題言直角
 與三角形等
先論曰甲乙丙三角形平分乙丙于丁作甲丁線次從
 甲作戊己線與乙丙平行又作己丙戊乙二線成直
[003-9b]
 角形此直角倍大於甲丁丙己形亦倍大于甲乙丙
 角形一卷/四一故甲乙丙三角形與甲丁丙己形等一卷/二十
 六/
 次論曰作甲丁垂線而第二圖丁非甲乙之平分第
 三圖甲在方形之外皆從甲作戊己線引長之與乙
 丙平行成戊己丙乙方形及甲己丙丁方形而各以
 丙乙平分于庚作庚辛垂線視甲丁為平行亦相等
 一卷三/十四其戊己丙乙倍大于辛庚丙己即倍大于三
[003-10a]
 角形何者以辛庚丙己長方形分三角形底線半故
 一卷三/十六
[003-11a]
  第二題
凡有法六角等形自中心到其一邉之半徑線作直角
形線其半徑線及以形之半周線舒作直線為矩内直
角長方形亦與有法形所容等
 解曰有甲乙丙丁戊己法形其心庚自庚至甲乙作
 直角線為庚辛另作壬癸線與庚辛等作癸子與甲
 乙丙丁線等即半周線也題言壬癸子丑直角形與
 甲乙丙丁戊己形之所容等
[003-11b]
 論曰自庚到各角皆作直線皆分作三角形皆相等
 一卷/八其甲乙庚三角形與甲辛辛庚二線所作矩内
 直角形等以甲辛分甲乙之/半故見本篇一題若以甲乙丙丁半形之
 周線為癸子線以與壬癸線共作矩内直角形即與
 有法全形等蓋此半邉三箇三角形照甲乙庚形作
 分中垂線其矩線内直角形俱倍本三角形故
[003-12a]
 
 
 
 
 
 
 
 
[003-12b]
  第三題
凡有法直線形與直角三邉形並設直角形傍二線一
長一短其短線與有法形半徑線等其長線與有法形
周線等則有法形與三邉形正等
 解曰甲乙丙有法形其心丁從丁望甲乙作垂線又
 有丁戊己直角形其邉丁戊與法形丁戊等其戊己
 線又與甲乙丙之周線等題言丁戊己三角之體與
 甲乙丙全形等
[003-13a]
 論曰試作丁戊己庚直角形兩平分于壬辛作直線
 與丁戊平行則丁戊辛壬直角形與甲乙丙形相等
 本篇/二題何者戊辛線得甲乙丙之半周而又在丁戊矩
 内即與有法形全體等故也其丁戊己三角形與丁
 戊壬辛直角形等則丁戊己三角形與甲乙丙全
 形亦等
[003-14a]
 
 
 
 
 
 
 
 
[003-14b]
  第四題
凡圜取半徑線及半周線作矩内直角形其體等
 解曰有甲乙丙圜其半徑為丁乙又有丁乙戊己直
 角形兩丁乙等半圜線與戊乙等題言甲乙丙所容與
 丁乙戊己直角形所容等
 論曰試以乙戊引長到庚令庚戊與乙戊等則乙庚
 與圜周全等次從丁望庚作直線既丁乙庚三角形
 之地與全圜地相等在圜書/一題而丁乙戊己又與丁乙
[003-15a]
 庚三角形等本篇四又一/卷四十註則丁乙戊己自與全圜體
 等
[003-16a]
 
 
 
 
 
 
 
 
[003-16b]
  第五題
凡直角三邉形任將一銳角于對邉作一直線分之其
對邉線之全與近直角之分之比例大於全銳角與所
分内鋭角之比例
 解曰有甲乙丙直角三邉形丙為直角從甲鋭角望
 所對丙乙邉任作甲丁線題言丙乙線與丙丁線之
 比例大於乙甲丙角與丁甲丙角之比例
 論曰甲丁線大於甲丙而小於甲乙一卷/十九若以甲為
[003-17a]
 心以丁為界作半規必分甲己線于乙之内而透甲
 戊線于丙之外其甲乙丁三角形與甲己丁三角形
 之比例大於甲丁丙三角形與甲丁戊之比例何者
 一為甲乙丁大形與甲己丁小形比一為甲丁丙小
 形與甲丁戊大形比也則更之乙甲丁形與丁甲丙
 形之比例大於己甲丁形與丁甲戊形之比例五卷/二十
 七/合之則乙甲丙形與丁甲丙形即是乙丁線與丁
 丙線之比例形之比例與底線之/比例相等在六卷一固大於甲己戊形
[003-17b]
 與甲丁戊形之比例其甲己戊圜分與甲丁戊圜分
 之比例原若己甲戊角與丁甲戊角之比例六卷三/十三系
 則乙丙線與丁丙線之比例大於乙甲丙角與丁甲
 丙角之比例也
[003-18a]


[003-19a]
 
 
 
 
 
 
 
 
[003-19b]
  第六題
凡直線有法形數端但周相等者多邉形必大於少邉

 解曰設直線有法形二為甲乙丙為丁戊己其圜周
 等而甲乙丙形之邉多于丁戊己不拘四邉六邉雖/十邉與十一二邉
 皆同/此論題言甲乙丙之體大於丁戊己之體
 論曰試於兩形外各作一圜而從心望一邉作庚壬
 作辛癸兩垂線平分乙丙於壬分戊己于癸三卷/三
[003-20a]
 甲乙丙形多邉者與丁戊己形少邉者外周既等而
 以乙丙求周六而遍以戊己求周四而徧則乙丙邉
 固小於戊己邉而乙壬半線亦小于戊癸半線矣兹
 截癸子與壬乙等而作辛子線又作辛戊辛己及庚
 丙庚乙諸線次第論之其己丁戊圜内各切線等即
 匀分各邉俱等而全形邉所倍於戊己一邉數與全
 圜切分所倍於戊己切分地亦等則甲乙丙内形全
 邉所倍於乙丙一邉與其全圜切分所倍于乙丙切
[003-20b]
 分不俱等乎其戊己圜切分與戊丁己全圜之切分
 若戊辛己角之與全形四直角六卷三十/三題之系則以平理
 推之移戊己邉於甲乙丙全邉亦若戊辛己角之於
 四直角也而甲乙丙内形周與乙丙一邉猶甲乙丙
 諸切圜與乙丙界之一切圜亦猶四直角之與庚乙
 丙角也六卷三十/三之二系則又以平理推戊己與乙丙即戊
 癸與乙壬而乙壬即是癸子又以平理推而戊辛己
 角與乙庚丙角亦若戊辛癸之與乙庚壬也五卷/六五
[003-21a]
 戊癸與癸子之比例原大於戊辛癸角與子辛癸角
 之比例本篇/五則戊辛癸與乙庚壬之比例大于癸辛
 戊與癸辛子之比例五卷/十三而癸辛子角大于壬庚乙
 角五卷/十其辛癸子與庚壬乙皆係直角而辛子癸角
 明小于庚乙壬角一卷三/十二令移壬乙庚角于癸子上
 而作癸子丑角則其線必透癸辛到丑其庚壬乙三
 角形之壬與乙兩角等于丑癸子三角形之癸子兩
 角而乙壬邉亦等于子癸邉則丑癸線亦等于庚壬
[003-21b]
 線而庚壬實贏于辛癸一卷二/十六今以庚壬
 線及甲乙丙半周線作矩内直角形必大於辛癸線
 及丁戊己半周線所作矩内直角形也本篇/二然則多
 邉直線形之所容豈不大于等周少邉直線形之所
 容乎
[003-22a]


[003-23a]
  第七題
有三角形其邉不等於一邉之上另作兩邉等三角形
與先形等周
 解曰有甲乙丙三角形其甲乙大于丙乙兩邉不等
 欲于甲丙上另作三角形與甲乙丙周等兩邉又等
 其法作丁戊線與甲乙乙丙合線等兩平分于己甲
 乙乙丙兩邉併既大於甲丙邉一卷/十則丁己己戊兩
 邉併亦大於甲丙而丁己己戊甲丙可作三角形矣
[003-23b]
 一卷三/十二以作甲庚丙得所求蓋庚甲庚丙自相等而
 甲丙同邉則二形之周等而甲庚丙與甲乙丙為兩
 邉等之三角形此庚㸃必在甲乙線外若在甲乙邉/上遇辛則辛丙線小于辛乙乙丙合
 線即不/得同周
[003-24a]


[003-25a]
  第八題
有三角形二等周等底其一兩邉等其一兩邉不等其
等邉所容必多於不等邉所容
 解曰有甲乙丙形其甲乙邉大於乙丙令於甲丙上
 更作甲丁丙三角形與甲乙丙等周本篇/七而丁甲丁
 丙兩腰等亦與甲乙乙丙合線等題言甲丁丙角形
 大於甲乙丙
 論曰試引甲丁至戊令丁戊與丁甲等亦與丁丙等
[003-25b]
 又作丁乙乙戊線夫甲乙乙戊合線既大於甲戊即
 大於甲丁丁丙合線亦大於甲乙乙丙合線此兩率
 者令減一甲乙則乙戊大於乙丙而丁戊乙三角形
 之丁戊丁乙兩邉與丁丙乙三角形之丁丙丁乙兩
 邉等其乙戊底大於乙丙底則戊丁乙角大于丙丁
 乙角而戊丁乙角踰戊丁丙角之半一卷三/十二令别作
 戊丁己角與丁甲丙角等則丁己線在丁乙之上而
 與甲丙平行一卷二/十八又令引長丁己與甲乙相遇而
[003-26a]
 作己丙線聨之其甲丁丙甲己丙既在兩平行之内又
 同底是三角形相等也六卷/一因顯甲己丙大于甲乙
 丙而甲丁丙兩邊等三角形必大於等周之甲乙
 丙矣問戊丁乙角何以踰戊丁丙角之半曰丁甲丙與丁丙甲兩/角等而戊丁丙為其外角凡外角必兼兩内角故也
[003-27a]
 
 
 
 
 
 
 
 
[003-27b]
  第九題
相似直角三邉形併對直角之兩弦線為一直線以作
直角方形又以兩相當之直線四并二直線各作直角
方形其容等
 解曰有甲乙丙及丁戊己三角形二相似其乙戊兩
 角為直角而甲與丁丙與己角各相等甲丙與丁己
 相當甲乙與丁戊相當題言併甲丙丁己為一直線
 於上作直角方形與併甲乙丁戊作直線及併乙丙
[003-28a]
 戊己作直線各於其上作直形方形兩併等
 論曰引長丁戊至庚令戊庚與甲乙同度次從庚作
 線與戊己平行又引丁己長之令相遇于辛從己作
 己壬線與戊庚平行一卷二/十九則己壬辛之角形與丁戊
 己相似而丁戊己與甲乙丙相似矣一卷三/十二何者己
 壬辛角與庚角等庚角與丁戊己角等己角又與乙
 角等而辛角與丁己戊角及丙角俱等壬己辛角與
 甲角亦等一卷三/十四又己壬邉與戊庚相等則亦與
[003-28b]
 甲乙相等而壬辛與乙丙己辛與甲丙俱相等一卷/二十
 六/故丁辛線兼丁己甲丙之度丁庚線兼丁戊甲乙
 之度而庚辛亦兼戊己乙丙之度庚壬即戊己也一/卷
 三十/四然則丁辛上直角方形與丁庚及庚辛上兩直
 角方形併自相等矣
[003-29a]


[003-30a]
 
 
 
 
 
 
 
 
[003-30b]
  第十題
有三角形二其底不等而腰等求於兩底上另作相似
三角形二而等周其兩腰各自相等
 解曰甲乙丙丁不等兩底上有甲戊乙及丙己丁三
 角形二其戊甲戊乙腰與己丙己丁腰俱相等若甲
 乙大於丙丁者則戊角大於己角一卷二/十五而兩三角
 形不相似求于兩底上各作三角形相似而兩腰各
 相等其周亦等
[003-31a]
 法曰作庚辛線與甲戊戊乙丙己己丁四線等而分
 之於壬令庚壬與壬辛之比例若甲乙與丙丁六卷/十
 甲乙既大于丙丁則庚壬亦大於壬辛而平分庚壬
 於癸平分壬辛于子庚壬與壬辛既若甲乙與丙丁
 則合之而庚辛之視壬辛若甲乙丙丁併之視丙丁
 矣五/卷夫庚辛併既大于甲乙丙丁併兩邉必大于一/邉在一卷二十
 則壬辛大於丙丁而庚壬大于甲乙也五卷/十四甲乙庚
 癸癸壬三線每二線必大于一線而丙丁壬子子辛
[003-31b]
 亦然令於甲乙上用庚癸癸壬線作甲丑乙三角形
 為兩腰等而其周在甲戊乙形之外以戊甲戊乙得/庚辛之半而庚
 壬之度/過之故於丙丁上用壬子子辛線作丙寅丁三角形
 亦兩腰等而其周在丙己丁之内己丙己丁亦得庚/壬之半而壬辛之
 度不及故俱/一卷二十二
 論曰并甲戊戊乙丙己己丁四線之度既與併甲丑
 丑乙丙己己丁四線之度相等則甲丑乙丙寅丁兩
 形自與甲戊乙丙己丁兩形同周而其兩腰亦自相
[003-32a]
 同至於兩形相似何也甲乙與丙丁若庚壬與辛壬
 而減半之庚壬與壬子五卷/十五又若丑甲與寅丙丑乙
 與寅丁也則更之而甲乙與甲丑若丙丁與丙寅而
 甲丑與丑乙若丙寅與寅丁是兩形為同邉之比
 例自相似六卷/五
[003-33a]


[003-34a]
 
 
 
 
 
 
 
 
[003-34b]
  第十一題
有大小兩底令作相似平腰三角形相併其所容必大
于不相似之兩三角形相併其底同其周同又四腰俱
同而不相似形併必小於相似形併
 解曰甲丙丙戊兩底上設有甲乙丙及丙丁戊兩三
 角形而甲乙乙丙丙丁丁戊四線俱等令于兩底上
 依前題别作甲己丙及丙庚戊兩形相似而與前兩
 三角形相併者等周題言甲己丙丙庚戊併大於甲
[003-35a]
 乙丙丙丁戊併
 論曰將甲丙丙戊作一直線而甲丙底大於丙戊底
 乃從巳過乙作己壬線兩分甲丙于壬又從丁過庚
 作丁辛線兩分丙戊于辛其甲己乙三角形之甲己
 己乙兩邉與乙己丙三角形之己丙己乙兩邉等而
 甲乙乙丙兩底又等則甲己乙角與丙己乙角亦等
 一卷/八又甲己壬三角形之甲己己壬兩邉與丙己壬
 三角形之丙己己壬兩邉等則甲己壬角與丙己壬
[003-35b]
 角等而甲壬壬丙之兩底亦等一卷/四壬之左右皆直
 角因顯丙辛辛戊亦等而辛之左右角亦直角矣次
 引丁辛至癸令辛癸與丁辛同度而從癸過丙作癸
 丑直線則丁丙辛三角形之丁辛辛丙兩邉與辛癸
 丙三角形之辛癸辛丙兩邉等而辛之上下角亦等
 為直角丁丙丙癸兩底等而丁丙辛角與癸丙辛角
 俱等一卷/四丁丙辛角既大于庚丙辛角而庚丙辛角
 相似與己丙壬角即相等一卷/五而丁丙辛即癸丙辛
[003-36a]
 總大於己丙壬其癸丙辛角等於對角之丑丙壬一/卷
 十/五是丑丙壬亦大於己丙壬而引癸丑線當在于丙
 己之外也若夫癸丙丙乙二線涵癸丙乙角向壬試
 作癸乙線以分壬丙于子而併乙丙丙癸二線必大
 於癸乙線一卷/二十則己丙丙庚併亦大于乙癸線何也
 此四形者兩兩相併為等周則甲乙乙丙丙丁丁戊四
 線併與甲己己丙丙庚庚戊四線併原相等而減半
 之乙丙丙丁即乙丙丙癸與己丙丙庚亦相等故也
[003-36b]
 併己丙丙庚二線為一直線就線上作直角方形必
 大於乙癸線上之直角方形夫己丙丙庚併之直角
 方形與己壬庚辛併之直角方形及壬丙丙辛上之
 直角方形併相等九/題而癸乙上之直角方形與乙壬
 併辛丁即辛/癸上之直角方形及壬子子辛上直角方
 形併又自相等九題辛從子上分兩對角其角等而/壬與 俱為直角相似之形令移置
 辛癸與乙壬之下移置壬辛為癸垂線則/乙壬辛癸為股壬辛為勾乙癸為弦矣此己壬庚
 辛線併之直角方形及壬丙丙辛上之直角方形併
[003-37a]
 明大於乙壬丁辛併之直角方形及壬子子辛上之
 直角方形併也此兩率者每減一壬辛上直角方形
 則己壬庚辛共線上之直角方形大於乙壬丁辛共
 線上直角方形矣而己壬庚辛兩線併大于乙壬丁
 辛兩線併矣此兩率者令一減乙壬一減庚辛則己
 乙豈不大于丁庚乎壬丙原大于丙辛以甲丙原大/于丙戊故
 則己乙與壬丙矩内直角形大於丁庚與辛丙矩内
 直角形而乙己丙三角形為己乙壬丙矩内直角形
[003-37b]
 之半何者令從壬丙作垂線與乙己平行而以乙己
 為底就作直角形此謂己乙壬丙矩内直角形其中
 積倍于己乙丙三角形反之則己乙丙角形為己乙
 壬丙矩形之半其丁庚丙三角形亦然乃丁庚及辛
 丙矩内直角形之半也則己乙丙三角形大于丁庚
 丙三角形而甲己丙乙甲形為丙乙己三角之倍者
 亦大於丙庚戊丁形為丁庚丙三角之倍者矣此兩
 率者又每加甲乙丙與丙庚戊之三角形則甲己丙
[003-38a]
 及丙庚戊之兩三角形併豈不大於甲乙丙及丙丁
 戊之兩三角形併哉
[003-39a]
 
 
 
 
 
 
 
 
[003-39b]
  第十二題
同周形其邉數相等而等角等邉者大於不等角等邉

 先解曰有甲乙丙丁戊己多邉形與他形同周同角
 者較必邉邉相等乃為最大之形
 論曰若謂不然先設甲乙乙丙不等邉如第一圖又
 作甲丙線于上作等邉三角為甲庚丙形與甲乙丙
 等周本篇/七則甲庚丙丁戊己形亦與甲乙丙丁戊己
[003-40a]
 形等周而甲庚丙三角形必大于甲乙丙三角形本/篇
 八/令每加丙丁戊己角形則甲庚丙丁戊己形亦大
 於甲乙丙丁戊己形故知不等邉者不為最大其他
 如丙丁邉之類或不等者亦如此推
 次解曰又設甲乙丙丁戊己等邉形與他形同周同
 邉者較必角角相等乃為最大之形
 論曰依上論各邉俱等則甲乙丙丙丁戊為等邉三
 角形邉角/俱等而甲乙乙丙與丙丁丁戊相等若謂不然
[003-40b]
 而乙角可大於丁角則甲丙線必大於丙戊線一卷四/二十
 試於甲丙丙戊兩底上别作三角形為甲庚丙為丙
 辛戊如第十題相似形令與甲乙丙丙丁戊併者等
 周則甲庚丙併丙辛戊者大于甲乙丙併丙丁戊本/篇
 十/一而每加丙戊己角形則甲庚丙辛戊己必大于甲
 乙丙丁戊己也何得以等周等邉而不等角者為最
 大乎
[003-41a]


[003-42a]
  第十三題
凡同周形惟圜形者大於衆直線形有法者
 解曰有甲乙丙圜形又有丁戊己多邉有法形其周
 等題言甲乙丙大於丁戊己
 論曰庚為甲乙丙之心辛為丁戊己之心甲乙丙外
 另作壬乙丙癸多邉形與丁戊己相似四卷十/六註而從
 壬癸切圜于甲者作半徑線于庚則庚甲為壬癸垂
 線而分壬癸之半三卷/十八又從辛作子丑垂線則辛丁
[003-42b]
 亦分子丑之半三卷三此設于兩多邉形外作切形/圜而以壬癸子丑為切圜線向心作
 垂線則垂線必分切線/之中故説在四卷十二兩形相似其壬全角與子全
 角等則半之而甲壬庚角與丁子辛角亦等壬甲庚
 直角與子丁辛直角亦等一卷三/十二然乙壬癸丙之周
 大於圜周而圜周與丁戊己形相同則是乙壬癸丙
 周原大於丁戊己周矣夫兩形相似而壬癸邉大于
 子丑邉則半之而壬甲亦大於子丁又壬甲與甲庚
 若子丁與丁辛之比例六卷/四而壬甲大于子丁則甲
[003-43a]
 庚亦大於丁辛五卷/十四是故取甲庚線與半圜周線以
 作矩内直角形其與圜地等也大於取丁辛線與丁
 戊己半周線以作矩内直角形其與形地等也本篇/四
 系曰推此見圜形大於各等周直線形第五題証有/法形同周者
 多邉為大又十二題証等周及邉數之等者有法為/大又本題証等周之有法形惟圜為大則圜為凡形
 等周者/之最大
[003-44a]
  第十四題
銳觚全形所容與鋭頂至邉垂線及三分底之一矩内
直角立形等
 解曰有觚形不拘幾面如甲乙丙丁戊底其頂巳又
 有寅庚直角立方形者其底庚辛壬癸得甲乙丙丁
 戊底三之一其髙庚子與觚等髙題言此寅庚形與
 觚形所容等
 論曰從立形底諸角與相對一角如子角者皆作線
[003-44b]
 以成庚辛壬癸子觚形此形與寅庚形同底同髙又
 同己甲鋭觚之髙既己甲形兼庚辛壬癸子觚之三
 十二卷六注言兩觚形同髙者其所容/之比例如其底底等亦等底倍亦倍寅庚全形亦
 兼庚辛壬癸子觚之三以同底同髙故/在十二卷七系則寅庚全方
 與己甲觚等
[003-45a]
 
 
 
 
 
 
 
 
[003-45b]
  第十五題
平面不拘幾邉其全體可容渾圜切形者設直角立形
其底得本形三之一其髙得圜半徑即相等可容渾圜/切形者必
圜形與諸面相切若長廣/不切諸面者不在此論
 解曰有甲乙丙丁形内含戊己庚辛圜其心壬而外
 線甲乙切圜于戊十一卷/三題試從戊壬割圜之半作戊
 己庚辛圜圜形書一/卷一題從壬心望各切圜之㸃作壬戊
 為甲乙垂線三卷/十八壬己為乙丙垂線壬庚為丙丁垂
[003-46a]
 線壬辛為甲丁垂線别一直角立方形午子其底子
 丑寅癸得甲乙丙丁體三之一而其髙辰子與圜半
 徑等題言此直角立方形與甲乙丙丁全體等
 論曰從壬心與甲乙丙丁各角作直線即分其體為
 數觚形其面即為觚底而皆以壬心為觚銳頂此各
 觚皆以其三分底之一及至銳髙之數為直角立方
 形皆與觚所容等本篇/十四又併為一形即與甲乙丙丁
 體等亦與午子等以午子底正得甲乙全形三之一
[003-46b]
 而其髙分圜半徑也
[003-47a]


[003-48a]
  第十六題
圜半徑及圜面三之一作直角立方形以較圜之所容

 解曰有甲乙丙渾圜其心為丁又有直角立形之戊
 在甲丁徑及甲乙丁渾圜三之一矩内題言戊形所
 容與甲乙丙渾圜等
 論曰若言不等謂戊大于渾圜形其較有巳者合以
 丁為心外作庚辛壬渾圜大于甲乙丙而勿令大於
[003-48b]
 戊第令或等或小以騐之而于庚辛壬内試作有法
 形勿切甲乙丙圜十二卷/十七自丁心至形邉各作垂線
 則垂線必長于甲丁又自丁心至形各角作直線以
 分此形為幾觚其庚辛壬法形諸直線為觚底而垂
 線至丁心為觚鋭頂試取各觚底三之一及丁垂線
 之髙以作直角立形與觚等本篇/十四則併為大直角立
 形亦與庚辛壬内之法形等本篇/十五如云以甲乙為髙
 而以各觚底三之一為直角立形併為大形則必小
[003-49a]
 於前形因顯庚辛壬三之一大于甲乙丙三之一而
 戊形甲丁徑及甲乙丙圜三之一内小於庚辛壬體
 而謂庚辛壬不大于戊形則向庚辛壬之内形尚大
 於戊形也
 又論曰戊形小於甲乙丙渾圜體者其較為己試從
 丁心再作癸子丑圜小于甲乙丙而勿令小于戊或
 大或等者以驗之於甲乙丙圜内作有法形不令切
 癸子丑十二卷/十七而従丁至甲乙丙各面為垂線此垂
[003-49b]
 線大於丁癸之半徑又從丁向法形諸角作直線以
 分此形為數觚以形之各面為觚底庚辛為觚鋭頂
 而取觚底三之一及底至丁之垂線以作直角立形
 與觚等若使以甲丁為髙而以各觚三之一為底以
 作直角立形則其形必髙于前形既甲乙丙圜之面
 大于其内形之面則圜面三之一大于内形面三之
 一而直角立方形在甲丁髙及甲乙丁面三之一固
 即戊體矣愈大於甲乙丁之内形矣而云癸子丑圜
[003-50a]
 或等或大於戊豈癸子丑圜大于甲乙丙圜而分大
 於全歟則戊體不小於甲乙丙矣從後論不可為小
 從前論不可為大故曰等也
[003-51a]
  第十七題
圜形與平面他形之容圜者其周同其容積圜為大
 解曰有甲圜其心甲其半徑甲乙又丙形與甲等周
 其周内可作諸切邉圜形而從心至邉為丙丁題言
 甲圜大于丙形
 論曰甲圜外試作與丙相似形十二卷/而從甲心至
 各邉切處作半徑垂線皆等本篇十/五有解其一為甲乙甲
 圜外形大於甲圜其周面亦大於丙面而甲乙垂線
[003-51b]
 亦大於丁丙垂線以甲半徑為髙乃以三分圜體之
 一作直角立方形即與甲圜形等本篇/十六以丙丁線為髙
 而以三分丙形之一作直角立方形亦與丙形等而
 甲之立方固大於丙之立方本篇/十五則甲圜與丙形雖
 同周而甲圜所容為大矣
[003-52a]


[003-53a]
  第十八題
凡渾圜形與圜外圜角形等周者渾圜形必大於圜角

 解曰有甲乙丙丁圜外作戊己庚辛等法形率以四
 數相偶若八面十二面十六面二十面及二十四二
 十八之類等邉等角近于圜形者又作戊壬過心線
 為樞以轉甲乙丙圜及戊己庚辛法形使平面旋為
 立圜之體則其形為圜外圜角之形而角與邉周遭
[003-53b]
 皆等圜書一卷二十/二及二十七又有渾圜形寅與圜角形等周
 題言寅圜大於圜角形
 論曰圜角外形既大於内之甲乙丙圜形則寅圜亦
 大於甲乙丙圜寅圜之半徑亦大於甲乙丙圜之半
 徑也夫渾圜中剖是為過心最大之圜此過心大圜
 之面恒得渾體四分之一圜書一卷/三十一題令倍寅徑以作
 夘辰徑其圜面四倍大于寅之圜面此専以圜面相/較也夘辰徑既
 倍寅徑則夘辰圜固四倍于寅圜以圜與圜為/徑與徑再加之比例故也在六卷附一増題則夘
[003-54a]
 辰圜與寅渾圜等此夘辰圜為欲見角故/畫作扁圜實正圜也次作未申圜
 與夘辰等作未酉申圜角形而取寅半徑為酉戌之
 髙又於夘辰上亦作夘巳辰圜角形而取甲乙丙圜
 半徑為巳午之髙兩圜體等而未酉申圜角形髙於
 夘巳辰圜角形則亦大於夘巳辰圜角形圜角形同/底之比例
 若其髙之比例在/十二卷十四題夫割寅渾圜之中半以為底即過/心大
 圜/也而以其半徑之髙為圜角形恒得寅渾圜四分之
 一此旋轉所成尖頂半圜形非只論/其一面也在圜書一卷三十二十則是一寅圜恒
[003-54b]
 兼四圜角之形而未申圜原四倍大於寅圜則未酉
 申圜角形固與寅之渾圜形等矣圜角形同髙之比/例若其底之比例
 故也在十二/卷十一題其夘巳辰圜角形底原等戊己庚形之
 面戊己庚之面與/寅圜之面等故而巳午之髙亦等於甲圜半徑即
 戊己庚辛角形自與夘巳辰圜角形等圜書一卷二/十九題論凡
 圜外有圜角形如甲乙丙外有戊己庚形者以圜體/過心大圜為底而以圜半徑為髙旋作圜角形即與
 圜外諸/圜各等夘巳辰圜角形既小於未酉申圜角形而戊
 己庚辛壬癸子丑形寧大于同周之寅乎
[003-55a]
 
 
 
 
 
 
 
 
[003-55b]
 
 
 
 
 
 
 
 乾坤體義卷下